skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pankow, Robert M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. As Hispanic-serving institutions (HSIs) continue to expand across the United States, there is an even greater need for faculty at HSIs to engage with the construct of servingness to advance Latinx student success. Yet, there is very little research that points to professional development for faculty to understand what servingness means and how to implement it into faculty roles of research, teaching, and service. To address this gap, this paper provides a model for faculty professional development around and with servingness. Following, this paper centers the voces of six faculty from diverse fields and disciplines who in their first year at an HSI participated in a professional development series focused on servingness, and who, then explicitly connected their research and teaching with servingness. As such, this paper provides practical steps to design professional development for faculty around servingness. It also highlights the significance of professional development for faculty implementation of servingness in research and teaching. 
    more » « less
    Free, publicly-accessible full text available November 20, 2025
  2. Organic solar cells (OSCs) using non-fullerene acceptors (NFAs) afford exceptional photovoltaic performance metrics, however, their stability remains a significant challenge. Existing OSC stability studies focus on understanding degradation rate-performance relationships, improving interfacial layers, and suppressing degradative chemical reaction pathways. Nevertheless, there is a knowledge gap concerning how such degradation affects crystal structure, electronic states, and recombination dynamics that ultimately impact NFA performance. Here we seek a quantitative relationship between OSC metrics and blend morphology, trap density of states, charge carrier mobility, and recombination processes during the UV-light-induced degradation of PBDB-TF:Y6 inverted solar cells as the PCE (power conversion efficiency) falls from 17.3 to 5.0%. Temperature-dependent electrical and impedance measurements reveal deep traps at 0.48 eV below the conduction band that are unaffected by Y6 degradation, and shallow traps at 0.15 eV below the conduction band that undergo a three-fold density of states increase at the PCE degradation onset. Computational analysis correlates vinyl oxidation with a new trap state at 0.25 eV below the conduction band, likely involving charge transfer from the UV-absorbing ZnO electron transport layer. In-situ integrated photocurrent analysis and transient absorption spectroscopy reveal that these traps lower electron mobility and increase recombination rates during degradation. Grazing-incidence wide-angle x-ray scattering and computational analysis reveal that the degraded Y6 crystallite morphology is largely preserved but that <1% of degraded Y6 molecules cause OSC PCE performance degradation by ≈50%. Together the detailed electrical, impedance, morphological, ultrafast spectroscopic, matrix-assisted laser desorption/ionization time-of-flight (MALDI-ToF) spectroscopy, and computational data reveal that the trap state energies and densities accompanying Y6 vinyl oxidation are primarily responsible for the PCE degradation in these operating NFA-OSCs. 
    more » « less
  3. Direct arylation polymerization (DArP) provides a more sustainable alternative to conventional methods for conjugated polymer synthesis, such as Stille–Migita or Suzuki–Miyura polymerizations. DArP proceeds through a C–H activation pathway, allowing for a reduction in the synthetic steps needed to access the monomer, since the installation of a transmetallating reagent, such as an organostannane or organoboron, is not required. However, compared to small-molecule synthesis, the prevalent conditions employed for DArP still require hazardous or unsustainably sourced reaction components, such as the solvent and transition-metal catalyst. This mini-review highlights recent work on the implementation of sustainable solvents, transition metal catalysts, and overall polymerization methods for DArP. The extension of small-molecule direct arylation conditions towards polymer synthesis is also discussed, along with the associated challenges, mechanistic considerations, and outlook for future work. 
    more » « less
  4. Initial reports on the novel Cu-catalyzed direct arylation polymerization (Cu-DArP) stated that it required the use of aryl iodides. Herein, we report the first Cu-DArP methodology using more accessible and practical aryl-bromides with catalytic Cu, leading to a range of conjugated polymers with good molecular weights (up to 17.3 kDa) and an undetectable level of defects. 
    more » « less